A1 adenosine receptor knockout mice exhibit increased mortality, renal dysfunction, and hepatic injury in murine septic peritonitis.
نویسندگان
چکیده
Sepsis is a leading cause of multiorgan dysfunction and death in hospitalized patients. Dysregulated inflammatory processes and apoptosis contribute to the pathogenesis of sepsis-induced organ dysfunction and death. A(1) adenosine receptor (A(1)AR) activation reduces inflammation and apoptosis after ischemia-reperfusion injury. Therefore, we questioned whether A(1)AR-mediated reduction of inflammation and apoptosis could improve mortality and organ dysfunction in a murine model of sepsis. A(1)AR knockout mice (A(1) knockout) and their wild-type (A(1) wild-type) littermate controls were subjected to cecal ligation and double puncture (CLP) with a 20-gauge needle. A(1) knockout mice or A(1) wild-type mice treated with 1,3-dipropyl-8-cyclopentylxanthine (a selective A(1)AR antagonist) had a significantly higher mortality rate compared with A(1) wild-type mice following CLP. Mice lacking endogenous A(1)ARs demonstrated significant elevations in plasma creatinine, alanine aminotransferase, aspartate aminotransferase, keratinocyte-derived chemokine, and tumor necrosis factor-alpha 24 h after induction of sepsis compared with wild-type mice. The renal corticomedullary junction from A(1) knockout mice also exhibited increased myeloperoxidase activity, intercellular adhesion molecule-1 protein, and mRNA encoding proinflammatory cytokines compared with renal samples from A(1) wild-type littermate controls. No difference in renal tubular apoptosis was detected between A(1) knockout and A(1) wild-type mice. We conclude that endogenous A(1)AR activation confers a protective effect in mice from septic peritonitis primarily by attenuating the hyperacute inflammatory response in sepsis.
منابع مشابه
Liebig on the 100 reichsmark banknote.
emia-reperfusion injury. FASEB J 2007; 21:2863–73 29. Lee HT, Xu H, Nasr SH, Schnermann J, Emala CW: A1 adenosine receptor knockout mice exhibit increased renal injury following ischemia and reperfusion. Am J Physiol Renal Physiol 2004; 286:F298 –306 30. Gallos G, Ruyle TD, Emala CW, Lee HT: A1 adenosine receptor knockout mice exhibit increased mortality, renal dysfunction, and hepatic injury i...
متن کاملA3 adenosine receptor activation decreases mortality and renal and hepatic injury in murine septic peritonitis.
The role of A3 adenosine receptors (ARs) in sepsis and inflammation is controversial. In this study, we determined the effects of A3AR modulation on mortality and hepatic and renal dysfunction in a murine model of sepsis. To induce sepsis, congenic A3AR knockout mice (A3AR KO) and wild-type control (A3AR WT) mice were subjected to cecal ligation and double puncture (CLP). A3AR KO mice had signi...
متن کاملThe Effect of Aerobic Training and Adenosine on the Expression of SREBP-1C and A1 Receptor in Hepatic Fat-fed Rats
Background and Objectives: Few studies have examined so far the effect of adenosine receptors’ injection and its downstream pathway on the liver’s fat metabolism. The aim of this study was to investigate the type of aerobic exercise and adenosine on the expression of sterol regulatory binding protein 1c SREBP-1c and the adenosine receptor A1 in the liver in the rats fed with high-fat foods. Mat...
متن کاملEcto-5'-nucleotidase (CD73) decreases mortality and organ injury in sepsis.
The extracellular concentrations of adenosine are increased during sepsis, and adenosine receptors regulate the host's response to sepsis. In this study, we investigated the role of the adenosine-generating ectoenzyme, ecto-5'-nucleotidase (CD73), in regulating immune and organ function during sepsis. Polymicrobial sepsis was induced by subjecting CD73 knockout (KO) and wild type (WT) mice to c...
متن کاملEnterocyte-specific epidermal growth factor prevents barrier dysfunction and improves mortality in murine peritonitis.
Systemic administration of epidermal growth factor (EGF) decreases mortality in a murine model of septic peritonitis. Although EGF can have direct healing effects on the intestinal mucosa, it is unknown whether the benefits of systemic EGF in peritonitis are mediated through the intestine. Here, we demonstrate that enterocyte-specific overexpression of EGF is sufficient to prevent intestinal ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 289 2 شماره
صفحات -
تاریخ انتشار 2005